LV06-02-内核模块-04-内核模块的工作机制

本文主要是内核模块——内核模块的工作机制的相关笔记,若笔记中有错误或者不合适的地方,欢迎批评指正😃。

点击查看使用工具及版本
PC端开发环境 Windows Windows11
Ubuntu Ubuntu20.04.2的64位版本
VMware® Workstation 17 Pro 17.6.0 build-24238078
终端软件 MobaXterm(Professional Edition v23.0 Build 5042 (license))
Win32DiskImager Win32DiskImager v1.0
Linux开发板环境 Linux开发板 正点原子 i.MX6ULL Linux 阿尔法开发板
uboot NXP官方提供的uboot,使用的uboot版本为U-Boot 2019.04
linux内核 linux-4.19.71(NXP官方提供)
点击查看本文参考资料
分类 网址 说明
官方网站 https://www.arm.com/ ARM官方网站,在这里我们可以找到Cotex-Mx以及ARMVx的一些文档
https://www.nxp.com.cn/ NXP官方网站
https://www.nxpic.org.cn/NXP 官方社区
https://u-boot.readthedocs.io/en/latest/u-boot官网
https://www.kernel.org/linux内核官网
点击查看相关文件下载
分类 网址 说明
NXP https://github.com/nxp-imx NXP imx开发资源GitHub组织,里边会有u-boot和linux内核的仓库
nxp-imx/linux-imx/releases/tag/v4.19.71 NXP linux内核仓库tags中的v4.19.71
nxp-imx/uboot-imx/releases/tag/rel_imx_4.19.35_1.1.0 NXP u-boot仓库tags中的rel_imx_4.19.35_1.1.0
I.MX6ULL i.MX 6ULL Applications Processors for Industrial Products I.MX6ULL 芯片手册(datasheet,可以在线查看)
i.MX 6ULL Applications ProcessorReference Manual I.MX6ULL 参考手册(下载后才能查看,需要登录NXP官网)
Source Code https://elixir.bootlin.com/linux/latest/source linux kernel源码
https://elixir.bootlin.com/u-boot/latest/source uboot源码

这一节我们来了解一下内核模块的工作机制。

一、ko文件的格式

1. ELF文件格式

ko文件在数据组织形式上是ELF(Excutable And Linking Format)格式,是一种普通的可重定位目标文件。 这类文件包含了代码和数据,可以被用来链接成可执行文件或共享目标文件,静态链接库也可以归为这一类。ELF 文件格式的可能布局如下图:

ELF 文件格式的可能布局

文件开始处是一个ELF头部(ELF Header),用来描述整个文件的组织,这些信息独立于处理器, 也独立于文件中的其余内容。详细分析可以看这里:ELF文件格式分析 (gitee.com)

2. 头部信息

我们在ubuntu中可使用readelf工具查看elf文件的头部信息:

1
readelf -h hello_world_demo.ko
image-20241117211654101

程序头部表(Program Header Table)是个数组结构,它的每一个元素的数据结构如下每个数组元素表示:

  • 一个”段”:包含一个或者多个”节区”,程序头部仅对于可执行文件和共享目标文件有意义
  • 其他信息:系统准备程序执行所必需的其它信息”

节区头部表/段表(Section Heade Table) ELF文件中有很多各种各样的段,这个段表(Section Header Table)就是保存这些段的基本属性的结构, ELF文件的段结构就是由段表决定的,编译器、链接器、装载器都是依靠段表来定位和访问各个段的属性的 包含了描述文件节区的信息。

ELF头部中:

  • e_shoff:给出从文件头到节区头部表格的偏移字节数,
  • e_shnum:给出表格中条目数目,
  • e_shentsize: 给出每个项目的字节数。

3. 节区

从上面哪些信息中可以确切地定位节区的具体位置、长度和程序头部表一样, 每一项节区在节区头部表格中都存在着一项元素与它对应,因此可知,这个节区头部表格为一连续的空间, 每一项元素为一结构体(思考这节开头的那张节区和节区头部的示意图)。我们可以加上-S参数读取elf文件的节区头部表的详细信息。

1
readelf -S hello_world_demo.ko
image-20241117213614990

节区头部表中又包含了很多子表的信息,我们简单的来看两个。

3.1 重定位表

重定位表(“.rel.text”)位于段表之后,它的类型为(sh_type)为”SHT_REL”,即重定位表(Relocation Table) 链接器在处理目标文件时,必须要对目标文件中某些部位进行重定位,即代码段和数据段中那些对绝对地址的引用的位置, 这些重定位信息都记录在ELF文件的重定位表里面,对于每个须要重定位的代码段或者数据段,都会有一个相应的重定位表 一个重定位表同时也是ELF的一个段,这个段的类型(sh_type)就是”SHT_REL”:

1
readelf -r hello_world_demo.ko
image-20241117213750265

3.2 字符串表

ELF文件中用到了很多字符串,比如段名、变量名等。因为字符串的长度往往是不定的, 所以用固定的结构来表示比较困难,一种常见的做法是把字符串集中起来存放到一个表,然后使用字符串在表中的偏移来引用字符串。 一般字符串表在ELF文件中也以段的形式保存,常见的段名为”.strtab”(String Table 字符串表)或者”.shstrtab”(Section Header String Table 段字符串表)

1
readelf -p 21 hello_world_demo.ko # 前面.shstrtab在节头中显示是21
image-20241117213950755

反正我是没咋看懂,就先这样吧,大概了解一下,详细的就看这篇文档:ELF文件格式分析 (gitee.com)

二、内核模块加载与卸载

在前面我们了解了ko内核模块文件的一些格式内容之后, 我们可以知道内核模块其实也是一段经过特殊加工的代码, 那么既然是加工过的代码,内核就可以利用到加工时留在内核模块里的信息, 对内核模块进行利用。所以我们就可以接着了解内核模块的加载过程和卸载过程了。

1. 加载过程

1.1 sys_init_module() 

首先 insmod 会通过文件系统将 .ko 模块读到用户空间的一块内存中, 然后执行系统调用 sys_init_module() 解析模组,这时,内核在vmalloc区分配与ko文件大小相同的内存来暂存ko文件, 暂存好之后解析ko文件,将文件中的各个section分配到init 段和core 段,在modules区为init段和core段分配内存, 并把对应的section copy到modules区最终的运行地址,经过relocate函数地址等操作后,就可以执行ko的init操作了, 这样一个ko的加载流程就结束了。 同时,init段会被释放掉,仅留下core段来运行。

sys_init_module()函数定义在module.c - kernel/module.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SYSCALL_DEFINE3(init_module, void __user *, umod,
unsigned long, len, const char __user *, uargs)
{
int err;
struct load_info info = { };

err = may_init_module();
if (err)
return err;

pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
umod, len, uargs);

err = copy_module_from_user(umod, len, &info);
if (err)
return err;

return load_module(&info, uargs, 0);
}
  • 第14行:通过vmalloc在vmalloc区分配内存空间,将内核模块copy到此空间,info→hdr 直接指向此空间首地址,也就是ko的elf header 。
  • 第18行:然后通过load_module()进行模块加载的核心处理,在这里完成了模块的搬移,重定向等过程。

1.2 load_module()

load_module()函数定义在module.c - kernel/module.c

1
2
3
4
5
6
7
8
9
10
11
12
13
/* 分配并加载模块 */
static int load_module(struct load_info *info, const char __user *uargs,
int flags)
{
struct module *mod;
long err = 0;
char *after_dashes;
//...
err = setup_load_info(info, flags);
//...
mod = layout_and_allocate(info, flags);
//...
}
  • 第9行:setup_load_info()加载struct load_info 和 struct module, rewrite_section_headers,将每个section的sh_addr修改为当前镜像所在的内存地址, section 名称字符串表地址的获取方式是从ELF头中的e_shstrndx获取到节区头部字符串表的标号,找到对应section在ELF文件中的偏移,再加上ELF文件起始地址就得到了字符串表在内存中的地址。
  • 第11行:在layout_and_allocate()中,layout_sections() 负责将section 归类为core和init这两大类,为ko的第二次搬移做准备。move_module()把ko搬移到最终的运行地址。内核模块加载代码搬运过程到此就结束了。

2. 卸载过程

卸载过程相对加载比较简单,我们输入指令rmmod,最终在系统内核中需要调用sys_delete_module进行实现。这个函数定义在module.c - kernel/module.c

具体过程如下:先从用户空间传入需要卸载的模块名称,根据名称找到要卸载的模块指针, 确保我们要卸载的模块没有被其他模块依赖,然后找到模块本身的exit函数实现卸载。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
unsigned int, flags)
{
struct module *mod;
char name[MODULE_NAME_LEN];
int ret, forced = 0;

if (!capable(CAP_SYS_MODULE) || modules_disabled)
return -EPERM;

if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
return -EFAULT;
name[MODULE_NAME_LEN-1] = '\0';

audit_log_kern_module(name);

if (mutex_lock_interruptible(&module_mutex) != 0)
return -EINTR;

mod = find_module(name);
if (!mod) {
ret = -ENOENT;
goto out;
}

if (!list_empty(&mod->source_list)) {
/* Other modules depend on us: get rid of them first. */
ret = -EWOULDBLOCK;
goto out;
}

/* Doing init or already dying? */
if (mod->state != MODULE_STATE_LIVE) {
/* FIXME: if (force), slam module count damn the torpedoes */
pr_debug("%s already dying\n", mod->name);
ret = -EBUSY;
goto out;
}

/* If it has an init func, it must have an exit func to unload */
if (mod->init && !mod->exit) {
forced = try_force_unload(flags);
if (!forced) {
/* This module can't be removed */
ret = -EBUSY;
goto out;
}
}

/* Stop the machine so refcounts can't move and disable module. */
ret = try_stop_module(mod, flags, &forced);
if (ret != 0)
goto out;

mutex_unlock(&module_mutex);
/* Final destruction now no one is using it. */
if (mod->exit != NULL)
mod->exit();
blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_GOING, mod);
klp_module_going(mod);
ftrace_release_mod(mod);

async_synchronize_full();

/* Store the name of the last unloaded module for diagnostic purposes */
strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));

free_module(mod);
return 0;
out:
mutex_unlock(&module_mutex);
return ret;
}

  • 第8行:确保有插入和删除模块不受限制的权利,并且模块没有被禁止插入或删除
  • 第11行:获得模块名字。
  • 第20行:找到要卸载的模块指针。
  • 第26行:有依赖的模块,需要先卸载它们。
  • 第41行:检查模块的退出函数。
  • 第51行:停止机器,使参考计数不能移动并禁用模块。
  • 第59行:告诉通知链module_notify_list上的监听者,模块状态 变为 MODULE_STATE_GOING。
  • 第64行:等待所有异步函数调用完成。

三、内核是如何导出符号的

1. 模块层叠

符号是什么东西?我们为什么需要导出符号呢?内核模块如何导出符号呢?其他模块又是如何找到这些符号的呢?

实际上,符号指的就是内核模块中使用EXPORT_SYMBOL 声明的函数和变量。 当模块被装入内核后,它所导出的符号都会记录在公共内核符号表中。 在使用命令insmod加载模块后,模块就被连接到了内核,因此可以访问内核的共用符号。

通常情况下我们无需导出任何符号,但是如果其他模块想要从我们这个模块中获取某些方便的时候, 就可以考虑使用导出符号为其提供服务。这被称为模块层叠技术。 例如msdos文件系统依赖于由fat模块导出的符号;USB输入设备模块层叠在usbcore和input模块之上。 也就是我们可以将模块分为多个层,通过简化每一层来实现复杂的项目。

modprobe是一个处理层叠模块的工具,它的功能相当于多次使用insmod, 除了装入指定模块外还同时装入指定模块所依赖的其他模块。

2. 怎么导出符号?

当我们要导出模块的时候,可以使用下面的宏:

1
2
EXPORT_SYMBOL(name)
EXPORT_SYMBOL_GPL(name) //name为我们要导出的标志

符号必须在模块文件的全局部分导出,不能在函数中使用,_GPL使得导出的模块只能被GPL许可的模块使用。 编译我们的模块时,这两个宏会被拓展为一个特殊变量的声明,存放在ELF文件中。 具体也就是存放在ELF文件的符号表中:

  • st_name: 是符号名称在符号名称字符串表中的索引值
  • st_value: 是符号所在的内存地址
  • st_size: 是符号大小
  • st_info: 是符号类型和绑定信息
  • st_shndx: 表示符号所在section

当ELF的符号表被加载到内核后,会执行simplify_symbols来遍历整个ELF文件符号表。 根据st_shndx找到符号所在的section和st_value中符号在section中的偏移得到真正的内存地址。 并最终将符号内存地址,符号名称指针存储到内核符号表中。simplify_symbols()函数定义在module.c - kernel/module.c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
/* Change all symbols so that st_value encodes the pointer directly. */
static int simplify_symbols(struct module *mod, const struct load_info *info)
{
Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
Elf_Sym *sym = (void *)symsec->sh_addr;
unsigned long secbase;
unsigned int i;
int ret = 0;
const struct kernel_symbol *ksym;

for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
const char *name = info->strtab + sym[i].st_name;

switch (sym[i].st_shndx) {
//......
case SHN_UNDEF:
ksym = resolve_symbol_wait(mod, info, name);
/* Ok if resolved. */
if (ksym && !IS_ERR(ksym)) {
sym[i].st_value = kernel_symbol_value(ksym);
break;
}

/* Ok if weak. */
if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
break;

ret = PTR_ERR(ksym) ?: -ENOENT;
pr_warn("%s: Unknown symbol %s (err %d)\n",
mod->name, name, ret);
break;

default:
/* Divert to percpu allocation if a percpu var. */
if (sym[i].st_shndx == info->index.pcpu)
secbase = (unsigned long)mod_percpu(mod);
else
secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
sym[i].st_value += secbase;
break;
}
}

return ret;
}

内核导出的符号表结构有两个字段,一个是符号在内存中的地址,一个是符号名称指针, 符号名称被放在了__ksymtab_strings这个section中, 以EXPORT_SYMBOL举例,符号会被放到名为__ksymtab的section中。 这个结构体我们要注意,它构成的表是导出符号表而不是通常意义上的符号表 。

我们来看一下这个kernel_symbol结构体,它定义在export.h - include/linux/export.h

1
2
3
4
struct kernel_symbol {
unsigned long value; // 符号在内存中的地址
const char *name; // 符号名称
};

其他的内核模块在寻找符号的时候会调用resolve_symbol_wait去内核和其他模块中通过符号名称寻址目标符号,resolve_symbol_wait会调用resolve_symbol,进而调用 find_symbol。 找到了符号之后,把符号的实际地址赋值给符号表 sym[i].st_value = ksym→value。find_symbol()函数定义在module.c - kernel/module.c:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/* Find a symbol and return it, along with, (optional) crc and
* (optional) module which owns it. Needs preempt disabled or module_mutex. */
/* 找到一个符号并将其连同(可选)crc和(可选)拥有它的模块一起返回。需要禁用抢占或模块互斥。 */
const struct kernel_symbol *find_symbol(const char *name,
struct module **owner,
const s32 **crc,
bool gplok,
bool warn)
{
struct find_symbol_arg fsa;

fsa.name = name;
fsa.gplok = gplok;
fsa.warn = warn;

if (each_symbol_section(find_symbol_in_section, &fsa)) {
if (owner)
*owner = fsa.owner;
if (crc)
*crc = fsa.crc;
return fsa.sym;
}

pr_debug("Failed to find symbol %s\n", name);
return NULL;
}
EXPORT_SYMBOL_GPL(find_symbol);
  • 第16行:在each_symbol_section中,去查找了两个地方,一个是内核的导出符号表,即我们在将内核符号是如何导出的时候定义的全局变量,一个是遍历已经加载的内核模块,查找动作是在each_symbol_in_section中完成的。
  • 第27行:导出符号标志.

至此符号查找完毕,最后将所有section借助ELF文件的重定向表进行重定向,就能使用该符号了。

参考资料

ELF 文件 - CTF Wiki (ctf-wiki.org)

ELF文件格式的详解_.elf-CSDN博客